Evaluation Metrics for Conditional Image Generation

نویسندگان

چکیده

We present two new metrics for evaluating generative models in the class-conditional image generation setting. These are obtained by generalizing most popular unconditional metrics: Inception Score (IS) and Fre'chet Distance (FID). A theoretical analysis shows motivation behind each proposed metric links novel to their counterparts. The link takes form of a product case IS or an upper bound FID case. provide extensive empirical evaluation, comparing variants other metrics, utilize them analyze existing models, thus providing additional insights about performance, from unlearned classes mode collapse.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation Metrics for Generation

Certain generation applications may profit from the use of stochastic methods. In developing stochastic methods, it is crucial to be able to quickly assess the relative merits of different approaches or models. In this paper, we present several types of intrinsic (system internal) metrics which we have used for baseline quantitative assessment. This quantitative assessment should then be augmen...

متن کامل

Semi-supervised FusedGAN for Conditional Image Generation

We present FusedGAN, a deep network for conditional image synthesis with controllable sampling of diverse images. Fidelity, diversity and controllable sampling are the main quality measures of a good image generation model. Most existing models are insufficient in all three aspects. The FusedGAN can perform controllable sampling of diverse images with very high fidelity. We argue that controlla...

متن کامل

Conditional Image Generation with PixelCNN Decoders

This work explores conditional image generation with a new image density model based on the PixelCNN architecture. The model can be conditioned on any vector, including descriptive labels or tags, or latent embeddings created by other networks. When conditioned on class labels from the ImageNet database, the model is able to generate diverse, realistic scenes representing distinct animals, obje...

متن کامل

Attribute2Image: Conditional Image Generation from Visual Attributes

This paper investigates a novel problem of generating images from visual attributes. We model the image as a composite of foreground and background and develop a layered generative model with disentangled latent variables that can be learned end-to-end using a variational auto-encoder. We experiment with natural images of faces and birds and demonstrate that the proposed models are capable of g...

متن کامل

Conditional CycleGAN for Attribute Guided Face Image Generation

State-of-the-art techniques in Generative Adversarial Networks (GANs) such as cycleGAN is able to learn the mapping of one image domain X to another image domain Y using unpaired image data. We extend the cycleGAN to Conditional cycleGAN such that the mapping from X to Y is subjected to attribute condition Z. Using face image generation as an application example, where X is a low resolution fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2021

ISSN: ['0920-5691', '1573-1405']

DOI: https://doi.org/10.1007/s11263-020-01424-w